Re: Using Rich Media Wisely

A response to Chapter 31, “Using Rich Media Wisely,” in Trends and Issues in Instructional Design and Technology

Question

Suppose you wish to help people learn how to carry out a fitness exercise routine using workout equipment.  Would it be better to use a series of still diagrams, an animation, or a video?  Would it be better to use printed text or spoken text or no text?  Justify your answer in terms of research evidence and a cognitive theory of learning.

Answer

In order to select the best options for training, in terms of rich media, it is best to begin with a learner-centered approach, asking, “How can we adapt rich media to aid human learning?” rather than beginning with the technology-centered question, “How can we use rich media to design instruction” (Clark & Mayer, 2017, pp. 259-260). Using the learner-centered approach means focusing on the facilitation of the learners’ natural learning process in order to gain the most ground in terms of instruction and knowledge construction (p. 260). “Rich media should be used (or not used) in ways that are consistent with what we know about how people learn and with research evidence concerning instructional effectiveness” (p. 260).

In this case, the overall objective is to help people learn how to carry out a fitness exercise routine using workout equipment. Utilizing evidence from research in cognitive theory, a learner-centered plan for effective instruction can be developed. According to cognitive information processing theory, proposed by Atkinson and Shriffin in 1968, there are three types of memory: sensory, working, and long-term (Driscoll, 2017, p. 54; Clark & Mayer, 2017, p. 261). Sensory memory receives external input though audio and visual channels. Next, the information is processed by the working memory, the center of all conscious thinking. Working memory is very limited and susceptible to cognitive overload, when overtaxed. Storage in long-term memory is the goal of learning, where knowledge is retained and can be accessed and built upon. Meaningful learning occurs when selecting, organizing, and integrating of information occurs, which moves that information from working memory into long-term memory (Clark & Mayer, 2017, p. 261).

The amount of mental work imposed on working memory is the cognitive load. “Novice learners with little related knowledge in long-term memory are much more susceptible to cognitive overload” (Clark & Mayer, 2017, p. 261). What differentiates novice learners from experts is how they construct knowledge and their ability to solves problems.” Novices lack “schemas.” These are chunks of information that have been encoded into long-term memory and are used by learners to “interpret events and solve problems” (Driscoll, 2017, p. 54). In fact, “differences in relevant prior knowledge” are recognized as “perhaps the single most important feature to be considered when designing instruction” (Clark & Mayer, 2017, p. 261).

Therefore the first question to ask when developing training for the workout program is, “Are the learners novices or experts?” For the purpose of this discussion, we will assume that the learners targeted by the workout program are novices.

“The major challenge of instructional design is to promote selecting, organizing, and integrating information (cognitive processing), in order to develop or build upon schemas in long-term memory without overloading the working memory” (Clark & Mayer, 2017, p. 261). There are three research-based principles that must be considered to prevent cognitive overload, and promote cognitive processing, during instruction: limited capacity principle, dual-channels principle, and active learning principle (p. 261).

Limited capacity principle

The limited capacity principle says, “People can only process a small amount of information in each channel at any one time” (Clark & Mayer, 2017, p. 261). Supporting research demonstrates that novices benefit from visuals but experts experience the reverse effect. Visuals may depress learning in experts (p. 263). Since our learners are novices, it is important to remember that explanations that use visuals, rather than text only, are better. In terms of visuals, although animated graphics can illustrate processes that cannot be otherwise illustrated, a series of still frames can result in learning as good or better than animated version, usually at a lower cost (p. 263).

Since it is also proven that simple line diagrams more effective than more elaborate ones, especially for novices, the major component moves of each exercise, and the mechanisms of the workout equipment, will be represented by simple line drawings (p. 263). Still drawings are helpful in allowing learners to compare one phase of movement to the next (pp. 263-264). However, since research has shown that physical tasks, particularly those using the hands, are best represented by animation rather than still graphics, our learners will be given several simple animations to bring together the component exercise moves that were illustrated by still visuals (p. 264).

Dual-channels principle

The dual-channels principle says that, “People have separate channels for processing visual/pictorial and auditory/verbal information” (Clark & Mayer, 2017, p. 261). The dual-channels principle is true for both sensory and working memory, so if information delivery is divided between auditory and visual channels, cognitive overload (which occurs in working memory) is reduced (p. 266). For the same reason, it is not ideal to use written (text) graphics along with other visual input since that is accessing the same visual channel. Augmenting visuals with verbal or audio instructions is more beneficial. Research shows that, whenever audio is used, it is best for learners to have access to replay or stop/start buttons. (p. 266).

So, when animations are used for our learners, audio narration will be added, though learners will have the ability to stop and start the lesson, as needed.

Active learning principle

The active learning principle explains that people must engage in cognitive processing in order for meaningful learning to occur—attending to relevant information, categorizing/organizing the material, and integrating it with knowledge schemas stored in long-term memory (Clark & Mayer, 2017, pp. 261-262). Utilizing research that supports active learning principle means helping learners to better attend to information, so it can be categorized and integrated with existing knowledge. Studies have shown that there is better learning when a reading precedes a video—learners are more apt to attend to the details in the video that were covered in the reading. In addition, information is better attended when extraneous footage and distracting visuals are eliminated (p. 265). Finally, animations that employ cueing devices—such as arrows on the line drawings and color flows and audio on the animations—draw attention to relevant aspects of the animation (p. 264).

So, our learners will read the directions for each exercise before seeing any animation (Clark & Mayer, 2017, p. 265). Animations will be focused on the exercise moves to eliminate extraneous distractions (p. 265). Finally, cues will be added to the stills, in the forms of arrows, and to the animation in the form of color flows and audio cues (p. 264). Learners will have individual controls that allow stopping and starting as deemed necessary, by the learner (pp. 264-265).

By drawing on cognitive processing research, the design for workout instruction, using machine, aims to provide learner-centered instruction, in order to “accommodate the learner’s limits on information processing and leverage the strengths of the human memory” (Clark & Mayer, 2017, p. 260).


Clark, R.C. & Mayer, R. E. (2017). Using Rich Media Wisely. In Reiser & Dempsey (Eds.), Trends and Issues in Instructional Design and Technology (pp. 259-228). New York, NY: Pearson.

Driscoll, M. P. (2017). Psychological Foundations of Instructional Design. In Reiser & Dempsey (Eds.), Trends and Issues in Instructional Design and Technology (pp. 259-228). New York, NY: Pearson.

Re: Intentional vs. Unintentional Learning & Technics

A response to Chapter 27, “E-Learning and Instructional Design,” in Trends and Issues in Instructional Design and Technology

Question

Assume you have been told to design a “Twenty-First Century Learning Course” that incorporates the full range of technics and technologies that are used today (social networking, collaboration, Facebook, etc.). What are the key characteristics for which you would design, and how would you design for intentional versus unintentional learning?

Answer

Instructional technics are “the activities or tactics that use technology designed or selected to attain specific learning activities” (Dempsey & Van Eck, 2017, pp. 232-233). For example, students might participate in class discussion by posting responses to the instructor’s question via Twitter, using the class or chapter hashtag. Or students might take photos of trees in their neighborhood—posting them to Instagram or Pinterest with text that identifies the family, genus, and species—in order to learn and share about plant taxonomy. Obviously, the use of technics can contribute tremendously to a rich learning experience for students. However, Quinn says designers should stay focused on “finding the right balance between what we have people do and what we have technology do” (Quinn, 2017, p. 248).

With that in mind, technics should be selected to meet the needs of the learner and in order to “create a rich, flexible [learning] environments that reflect elemental outcomes, support necessary synthetic outcomes, provide connections to the world outside the e-learning environment” (Dempsey & Van Eck, 2017, p. 234). Elemental outcomes are associated with the real-life outcomes, in terms of actual tasks, required by the learning environment or situation. Synthetic outcomes are the higher order, more internal outcomes such as “decontextualized procedures, concepts, and knowledge” (Dempsey & Litchfield, 2011, p. 26).

In designing learning experiences, it is important to determine if the desired learning outcomes require interaction, collaboration, and interaction with real-world environments. Synchronous web conferences and in-person presentations, which are re-corded and can be shared later “via Web, iPod, or cell phone playback,” support outcomes necessitating learner interactions (Dempsey & Van Eck, 2017, p. 234). On the other hand, collaboration outcomes are supported by other activities associated with group work, where group members can “self-select from a variety of tools such as instant messaging, texting, wikis, and conferencing technology” (p. 234). When interactions with real-world environments is necessary, “secure Web-conferencing tools and virtual worlds should be valuable for discussion, meetings where presences is desirable, or role-playing” (p. 234).

For the instructional designer, there are many systematic models available for designing intentional learning outcomes. Fink’s Significant learning model strikes me as the most intentional of models—targeting various aspects of the learning process such as foundational knowledge, application, integration, human dimension, caring, and learning how to learn (Litchfield, 2017, pp. 186-190). Beginning with the significant learning objectives in mind, the designer can progress through Fink’s twelve steps of design. In steps four (select effective teaching and learning activities), five (make sure the primary components are integrated), seven (select or create a teaching strategy), and eight (integrate course structure and the instructional strategy to create an overall scheme of learning activities), the designer can incorporating the appropriate technics into the overall learning strategy to address the desired outcomes (p. 188).

“Pedagogical philosophies such as constructivism, connectionism, and situated learning address incidental learning” and use of e-learning environments such as the Internet allows for “serendipity in acquiring or expanding knowledge” (Dempsey & Van Eck, 2017, p. 231). Keeping these principles in mind, the designer works from the mindset of arranging the learning experience rather than the learning. It seems best to arrange for a combination of both intentional and unintentional by coordinating technics (learning activities using technologies to achieve desired change in the learner) with effective, systematic design, balancing both elemental and synthetic outcomes whenever possible.


Dempsey, J.V. & Litchfield, B. C. (2011). Elemental and synthetic e-learning. [PDF File] International Journal of Innovation, Management, and Technology, 2(1), pp. 25-30. Retrieved from: http://www.ijimt.org/papers/98-E00160.pdf

Dempsey, J. V. & Van Eck, R. N. (2017). E-Learning and Instructional Design. In Reiser & Dempsey (Eds.), Trends and Issues in Instructional Design and Technology (pp.229-236). New York, NY: Pearson.

Litchfield, B. C. (2017). Instructional design in higher education. In Reiser & Dempsey (Eds.), Trends and Issues in Instructional Design and Technology (pp. 185-191). New York, NY: Pearson.

Quinn, C. (2017). Mobile Learning. In Reiser & Dempsey (Eds.), Trends and Issues in Instructional Design and Technology (pp. 244-249). New York, NY: Pearson.

Re: Performance Supports

A response to Chapter 15, “Performance Support,” in Trends and Issues in Instructional Design and Technology

Question

Imagine you are an instructional designer in the not-too distant future, where the use of performance support is commonplace. How might these tools be used outside formal course instruction to enhance learning?  How might these tools be integrated into a formal course design to enhance learning?  How might performance support be used before or after the formal leaning?  Provide an example of each.

Answer

Performance support is “a tool or other resource, from print to technology supports, which provides the just right amount of task guidance, support, and productivity benefits to the user—precisely at the moment of need” (Rosenberg, 2017, p. 133). As an instructional designer, performance support creates a bridge from the classroom to the workplace. These tools can be used outside formal course instruction to enhance learning, saving precious employee hours that might be lost in training classes (p. 133). For example, in lieu of some classroom courses, we have inserted the multi-device app, Skillpill, into the overall instructional design plan for management training at Waltech, Walmart’s big box technology offering.[1] Skillpill is a microlearning app that provides customized content via “learning videos, sophisticated learning apps, support templates, gamified techniques, or social learning tools” in order to improve learners’ engagement and increase desired behavior by up to 10-20% (“Skillpill Digital Tour”, n.d). This Inventory Sidekick is an example of an embedded resource—employees don’t have to try to fit training into their scheduled because the device shows them how to do their work (p. 133).

All Waltech, employees must complete a yearly, half-day team training designed to improve communication, make the workplace more enjoyable, set personal and store goals, and help employees understand their own strengths and weaknesses (University of Minnesota Publishing, 2016). The class consists of some lecture and group discussions, augmented by gamified scenarios dealing with interpersonal skills, plus online personality quizzes, where the performance support tools are supplied through our partnership with Skillpill. Group discussions are facilitated by the instructor after participants utilize the gamified scenarios and personality tests. These technological supports are essential to engaging the learners within the classroom setting. Since much of the instructional technology is outsourced through our partnership with Skillpill, these classes are cost-effective, easy to update due to the myriad numbers of course options, and instruction is scalable to the number of participants who rotate weekly through the program (Rosenberg, 2017, p. 135). Student acceptance of this blended model of teaching is very high (p. 137).

At Waltech, employees use an Inventory Side-kick performance support device as they stock the shelves (Rosenberg, 2017, p. 134). As part of our learning design plan, this performance support tool is integrated into their “New-Hire Hello” course, which takes place in the classroom, during the first week of employment. Then, after training, the Inventory Side-kick aids in the management of store inventory, which though complex, is a “clear and repetitive task” (p. 136). This device is helpful because maintaining inventory requires a “standardized and reliable output” and necessitates good record keeping and monitoring of employee work (p. 136).

[1] FYI: I totally made that store up.


Rosenberg, M.J. (2017). Performance Support. In Reiser & Dempsey (Eds.), Trends and Issues in Instructional Design and Technology (pp.52-60). New York, NY: Pearson.

University of Minnesota Libraries Publishing. (2016, March 22). Types of Training. Human Resource Management. Retrieved from http://open.lib.umn.edu/humanresourcemanagement/chapter/8-2-types-of-training-2/. This resource is licensed under a CC BY-NC-SA 4.0 License.